An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (2024)

Xingzhuo ChenGeorge P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy,
Texas A. & M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843, USA
Lifan WangGeorge P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy,
Texas A. & M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843, USA
Daniel KasenAstronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, Berkeley, CA 94720, USA

Abstract

We present an integral-based technique (IBT) algorithm to accelerate supernova (SN) radiative transfer calculations.The algorithm utilizes “integral packets”, which are calculated by the path integral of the Monte-Carlo energy packets, to synthesize the observed spectropolarimetric signal at a given viewing direction in a 3-D time-dependent radiative transfer program.Compared to the event-based technique (EBT) proposed by Bulla etal. (2015), our algorithm significantly reduces the computation time and increases the Monte-Carlo signal-to-noise ratio.Using a 1-D spherical symmetric type Ia supernova (SN Ia) ejecta model DDC10 and its derived 3-D model, the IBT algorithm has successfully passed the verification of: (1) spherical symmetry; (2) mirror symmetry; (3) cross comparison on a 3-D SN model with direct-counting technique (DCT) and EBT.Notably, with our algorithm implemented in the 3-D Monte-Carlo radiative transfer code SEDONA, the computation time is faster than EBT by a factor of 1030103010-3010 - 30, and the signal-to-noise (S/N) ratio is better by a factor of 5105105-105 - 10, with the same number of Monte-Carlo quanta.

Supernova

software: SEDONA(Kasen etal., 2006)

1 Introduction

Type Ia supernovae (SNe Ia) have been widely applied in cosmological studies (e.g. Abbott etal. (2019); Brout etal. (2022)) based on the empirical relation between the light curve properties and the luminosities (e.g. Phillips (1993)).However, the explosion mechanism of SNe Ia is still a mystery; studies of the ejecta structure rely on simulations that include hydrodynamics, nucleosynthesis, and radiative transfer.

Radiative transfer simulations of supernovae calculate the specific intensity and plasma excitation states to obtain spectra that can be compared to optical spectroscopic and photometric observations.Many radiative transfer codes assume that SNe Ia are spherical symmetric and reasonable agreement have been found among the simulation results of different codes (Blondin etal., 2022).

However, imaging of nearby SN Ia remnants (e.g. Ferrazzoli etal. (2023)) and hydrodynamic simulations (e.g. Gamezo etal. (2004); Kromer etal. (2013)) suggest that SNe Ia have an asymmetric 3-D structure.Given the distance to most SNe Ia, this 3-D structure cannot be resolved, but can be probed by spectropolarimetric observations (e.g., Wang etal., 2003; Cikota etal., 2019; Yang etal., 2022).The polarization from SN Ia is primarily due to Thomson scattering of photons, and a non-zero linear polarization signal can arise in asymmetric SN ejecta due to the incomplete cancellation of polarization from photons scattered from different geometrical structures (Wang & Wheeler, 2008).

Monte-Carlo methods, which use energy packets to emulate the propagation of photons in the SN plasma, provide a flexible way to treat complicated physical processes (Lucy, 2002, 2003) and have been applied in 3-D time-dependent radiative transfer codes such as SEDONA (Kasen etal., 2006), and ARTIS (Kromer & Sim, 2009).3-D Monte-Carlo radiative transfer (MCRT) simulations can be computationally expensive, as many photon packets must be propagated to reduce the statistical noise in the synthesized observables.This especially poses a challenge for modeling SN polarization, as the expected signals are typically only at the 1% level or less.To reduce the noise in SN MCRT simulations, Bulla etal. (2015) introduced an “event-based technique” (EBT) for spectropolarimetry synthesis, which has been applied to simulations of SNe Ia (Bulla etal., 2016a, b), superluminous SNe (Inserra etal., 2016), and kilonovae (Bulla etal., 2021).

In this paper, we introduce a new integral-based technique (IBT), which is implemented in the MCRT code SEDONA,to efficiently construct observable spectra from a 3-D MCRT computation.We find that IBT is 1030103010-3010 - 30 times faster and 5105105-105 - 10 times less Monte-Carlo noise than EBT, with the same number of Monte-Carlo quanta.Moreover, IBT can be applied to the ultraviolet and infrared wavelength, and early phase of SNe, which was not calculated with EBT (Bulla etal., 2015).Section 2 reviews the direct-counting technique (DCT) and event-based technique (EBT) that have been used in previous MCRT codes.Section 3 presents the IBT method.Section 4 uses several toy models to verify the spectropolarimetry results from IBT.Section 5 compares the Monte-Carlo simulation error and computation time of the three algorithms: DCT, EBT, and IBT.Section 6 summarizes our main conclusions.

2 Polarized Spectrum Extraction

In the SEDONA code,an optical photon packet (OP) represents a collection of photons with the same frequency, spatial coordinate, and propagation direction.The OPs undergo interaction events due to Thomson scattering, bound-bound transitions, bound-free transitions, and free-free transitions which can change their frequency and direction.

The polarization information of an OP is stored as a dimensionless Stokes vector

𝒔OP=(1quv),subscript𝒔𝑂𝑃matrix1𝑞𝑢𝑣\boldsymbol{s}_{OP}=\begin{pmatrix}1\\q\\u\\v\end{pmatrix}\ ,bold_italic_s start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT = ( start_ARG start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL italic_q end_CELL end_ROW start_ROW start_CELL italic_u end_CELL end_ROW start_ROW start_CELL italic_v end_CELL end_ROW end_ARG ) ,(1)

and the Stokes vector can be constructed with 𝒔OPsubscript𝒔𝑂𝑃\boldsymbol{s}_{OP}bold_italic_s start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT and the energy of the OP EOPsubscript𝐸𝑂𝑃E_{OP}italic_E start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT.

Typically, OPs are generated with zero initial polarization as expected for thermal emission.During the propagation of an OP, the linear polarization state changes in a Thomson scattering event according to the Rayleigh scattering phase matrix (Section 1.17, equation 217 of (Chandrasekhar, 1960)).In bound-bound, bound-free, and free-free interactions, the OPs are typically assumed to be fully depolarized.The current version of SEDONA does not include magnetic fields, and the V𝑉Vitalic_V parameter in the Stokes vector, which represents the circular polarization, is set to zero.

2.1 Direct Counting Technique

A straightforward method of spectral synthesis in MCRT is the direct counting technique (DCT), which sums the energy of OPs that escape the simulation domain within a certain frequency, time, and viewing angle bin.The observed flux is then calculated as

(𝒬𝒰𝒱)=14πr2ΔtΔνΔΩiEOP,i𝒔OP,imatrix𝒬𝒰𝒱14𝜋superscript𝑟2Δ𝑡Δ𝜈ΔΩsubscript𝑖subscript𝐸𝑂𝑃𝑖subscript𝒔𝑂𝑃𝑖\begin{pmatrix}\mathcal{I}\\\mathcal{Q}\\\mathcal{U}\\\mathcal{V}\end{pmatrix}=\frac{1}{4\pi r^{2}\Delta t\Delta\nu\Delta\Omega}\sum%_{i}E_{OP,i}\boldsymbol{s}_{OP,i}( start_ARG start_ROW start_CELL caligraphic_I end_CELL end_ROW start_ROW start_CELL caligraphic_Q end_CELL end_ROW start_ROW start_CELL caligraphic_U end_CELL end_ROW start_ROW start_CELL caligraphic_V end_CELL end_ROW end_ARG ) = divide start_ARG 1 end_ARG start_ARG 4 italic_π italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ italic_t roman_Δ italic_ν roman_Δ roman_Ω end_ARG ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_O italic_P , italic_i end_POSTSUBSCRIPT bold_italic_s start_POSTSUBSCRIPT italic_O italic_P , italic_i end_POSTSUBSCRIPT(2)

where 𝒔OP,isubscript𝒔𝑂𝑃𝑖\boldsymbol{s}_{OP,i}bold_italic_s start_POSTSUBSCRIPT italic_O italic_P , italic_i end_POSTSUBSCRIPT is dimensionless Stokes vector of the i𝑖iitalic_i-th OP, EOP,isubscript𝐸𝑂𝑃𝑖E_{OP,i}italic_E start_POSTSUBSCRIPT italic_O italic_P , italic_i end_POSTSUBSCRIPT is the lab frame energy of the i𝑖iitalic_i-th OP, ΔtΔ𝑡\Delta troman_Δ italic_t is the size of the arrival time bin, ΔνΔ𝜈\Delta\nuroman_Δ italic_ν is the size of the frequency bin, r𝑟ritalic_r is the distance to the SN center, ΔΩΔΩ\Delta\Omegaroman_Δ roman_Ω is the viewing direction bin size.The summation is over all the OPs in the arrival time interval [tΔt/2,t+Δt/2)𝑡Δ𝑡2𝑡Δ𝑡2[t-\Delta t/2,t+\Delta t/2)[ italic_t - roman_Δ italic_t / 2 , italic_t + roman_Δ italic_t / 2 ), the frequency interval [νΔν/2,ν+Δν/2)𝜈Δ𝜈2𝜈Δ𝜈2[\nu-\Delta\nu/2,\nu+\Delta\nu/2)[ italic_ν - roman_Δ italic_ν / 2 , italic_ν + roman_Δ italic_ν / 2 ), and the viewing direction interval [φΔφ/2,φ+Δφ/2)𝜑Δ𝜑2𝜑Δ𝜑2[\varphi-\Delta\varphi/2,\varphi+\Delta\varphi/2)[ italic_φ - roman_Δ italic_φ / 2 , italic_φ + roman_Δ italic_φ / 2 ); [θΔθ/2,θ+Δθ/2)𝜃Δ𝜃2𝜃Δ𝜃2[\theta-\Delta\theta/2,\theta+\Delta\theta/2)[ italic_θ - roman_Δ italic_θ / 2 , italic_θ + roman_Δ italic_θ / 2 ).

In the DCT method, the signal-to-noise ratio (S/N) values of the synthetic spectra depend on the number of OPs simulated and the choice of the bins of arrival time, frequency, and viewing direction.Therefore, a higher resolution in viewing angle results in fewer OPs per bin and a lower S/N. The DCT has been the default implementation in the SEDONA code.

2.2 Virtual Packets

Several techniques have been suggested to improve the S/N in MCRT simulations.The idea of a “virtual packet” (VP) in the SN simulation context is discussed by Kerzendorf & Sim (2014) and implemented in the 3-D simulation by Bulla etal. (2015).Generally, VPs are used as follows

  • An observer viewing direction is specified at the start of the MCRT simulation.

  • VPs are created in the SN plasma to represent the emitted and the scattered photons at the corresponding volume-time-frequency bin pointing to the viewing direction.

  • The energy of each VP is reduced by the optical depth along the path to the observer.

  • Finally, the escaped VPs are used to synthesize the spectrum for the specified observer viewing angle.

Event-based techinque (EBT), proposed by Bulla etal. (2015), utilizes VPs to increase the S/N relative to DCT.In the EBT calculation, when an OP has undergone a physical event, a VP is created at the same coordinate and time with the same co-moving frame frequency.If the interaction event is Thomson scattering, then the co-moving frame Stokes vector of the VP is calculated from the Rayleigh scattering rule (Chandrasekhar, 1960):

𝑺¯VP=𝑺¯OP𝑷(θ¯OP,φ¯OP,θ¯,φ¯),subscript¯𝑺𝑉𝑃subscript¯𝑺𝑂𝑃𝑷subscript¯𝜃𝑂𝑃subscript¯𝜑𝑂𝑃¯𝜃¯𝜑\bar{\boldsymbol{S}}_{VP}=\bar{\boldsymbol{S}}_{OP}\boldsymbol{P}(\bar{\theta}%_{OP},\bar{\varphi}_{OP},\bar{\theta},\bar{\varphi})\ ,over¯ start_ARG bold_italic_S end_ARG start_POSTSUBSCRIPT italic_V italic_P end_POSTSUBSCRIPT = over¯ start_ARG bold_italic_S end_ARG start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT bold_italic_P ( over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT , over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT , over¯ start_ARG italic_θ end_ARG , over¯ start_ARG italic_φ end_ARG ) ,(3)

where 𝑺¯OPsubscript¯𝑺𝑂𝑃\bar{\boldsymbol{S}}_{OP}over¯ start_ARG bold_italic_S end_ARG start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT is the Stokes vector of the OP in the co-moving frame, (θ¯OP,φ¯OP)subscript¯𝜃𝑂𝑃subscript¯𝜑𝑂𝑃(\bar{\theta}_{OP},\bar{\varphi}_{OP})( over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT , over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT ) is the OP propagating direction in the co-moving frame, (θ¯,φ¯)¯𝜃¯𝜑(\bar{\theta},\bar{\varphi})( over¯ start_ARG italic_θ end_ARG , over¯ start_ARG italic_φ end_ARG ) is the viewing direction in the co-moving frame, 𝑷𝑷\boldsymbol{P}bold_italic_P is the combination of the rotation matrix and the scattering matrix (See Equation 10 in Bulla etal. (2015)).In the following, co-moving frame quantities are denoted with a bar, whereas non-bar quantities refer to the lab frame.A detailed expression of the 𝑷𝑷\boldsymbol{P}bold_italic_P matrix is given in Appendix A.

If the interaction event is a bound-bound transition, bound-free transition, or free-free transition, then an depolarized VP propagating towards the viewing direction is created.The energy of the VP is

E¯VP=14πE¯OP.subscript¯𝐸𝑉𝑃14𝜋subscript¯𝐸𝑂𝑃\bar{E}_{VP}=\frac{1}{4\pi}\bar{E}_{OP}\ .over¯ start_ARG italic_E end_ARG start_POSTSUBSCRIPT italic_V italic_P end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 4 italic_π end_ARG over¯ start_ARG italic_E end_ARG start_POSTSUBSCRIPT italic_O italic_P end_POSTSUBSCRIPT .(4)

After creation, the VPs propagate along the viewing direction with the speed of light, and are not considered in the subsequent computation of the plasma excitation and ionization states.The total optical depth along the VP trajectory is integrated as

τtot=jdjαtot,j,subscript𝜏𝑡𝑜𝑡subscript𝑗subscript𝑑𝑗subscript𝛼𝑡𝑜𝑡𝑗\tau_{tot}=\sum_{j}d_{j}\alpha_{tot,j}\ ,italic_τ start_POSTSUBSCRIPT italic_t italic_o italic_t end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT italic_t italic_o italic_t , italic_j end_POSTSUBSCRIPT ,(5)

where djsubscript𝑑𝑗d_{j}italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is the length of the j𝑗jitalic_j-th line segment of the VP trajectory, αtot,jsubscript𝛼𝑡𝑜𝑡𝑗\alpha_{tot,j}italic_α start_POSTSUBSCRIPT italic_t italic_o italic_t , italic_j end_POSTSUBSCRIPT is the total extinction coefficient at the j𝑗jitalic_j-th line segment.The lab frame extinction coefficient is calculated from the co-moving frame value

αtot,j(ν)=(ν¯/ν)α¯tot,j(ν¯),subscript𝛼𝑡𝑜𝑡𝑗𝜈¯𝜈𝜈subscript¯𝛼𝑡𝑜𝑡𝑗¯𝜈\alpha_{tot,j}(\nu)=(\bar{\nu}/\nu)\bar{\alpha}_{tot,j}(\bar{\nu})\ ,italic_α start_POSTSUBSCRIPT italic_t italic_o italic_t , italic_j end_POSTSUBSCRIPT ( italic_ν ) = ( over¯ start_ARG italic_ν end_ARG / italic_ν ) over¯ start_ARG italic_α end_ARG start_POSTSUBSCRIPT italic_t italic_o italic_t , italic_j end_POSTSUBSCRIPT ( over¯ start_ARG italic_ν end_ARG ) ,(6)

where ν¯¯𝜈\bar{\nu}over¯ start_ARG italic_ν end_ARG and ν𝜈\nuitalic_ν are the co-moving frame frequency and the rest-frame frequency respectively.

The VP is moved in small line segments, the length of which are determined by finding the minimum distance among the following

  • The VP reaches the boundary of a volume cell.

  • The VP reaches the end of a time step.

  • The co-moving frame frequency of the VP reaches the boundary of the frequency grid of αtotsubscript𝛼𝑡𝑜𝑡\alpha_{tot}italic_α start_POSTSUBSCRIPT italic_t italic_o italic_t end_POSTSUBSCRIPT.

The final spectrum is constructed by summing the VPs

(𝒬𝒰𝒱)=14πr2ΔtΔνiEVP,i𝒔VP,ieτtot,i,matrix𝒬𝒰𝒱14𝜋superscript𝑟2Δ𝑡Δ𝜈subscript𝑖subscript𝐸𝑉𝑃𝑖subscript𝒔𝑉𝑃𝑖superscript𝑒subscript𝜏𝑡𝑜𝑡𝑖\begin{pmatrix}\mathcal{I}\\\mathcal{Q}\\\mathcal{U}\\\mathcal{V}\end{pmatrix}=\frac{1}{4\pi r^{2}\Delta t\Delta\nu}\sum_{i}E_{VP,i}%\boldsymbol{s}_{VP,i}e^{-\tau_{tot,i}}\ ,( start_ARG start_ROW start_CELL caligraphic_I end_CELL end_ROW start_ROW start_CELL caligraphic_Q end_CELL end_ROW start_ROW start_CELL caligraphic_U end_CELL end_ROW start_ROW start_CELL caligraphic_V end_CELL end_ROW end_ARG ) = divide start_ARG 1 end_ARG start_ARG 4 italic_π italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ italic_t roman_Δ italic_ν end_ARG ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_V italic_P , italic_i end_POSTSUBSCRIPT bold_italic_s start_POSTSUBSCRIPT italic_V italic_P , italic_i end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_τ start_POSTSUBSCRIPT italic_t italic_o italic_t , italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ,(7)

the summation is over all the VPs in the frequency bin [νΔν/2,ν+Δν/2)𝜈Δ𝜈2𝜈Δ𝜈2[\nu-\Delta\nu/2,\nu+\Delta\nu/2)[ italic_ν - roman_Δ italic_ν / 2 , italic_ν + roman_Δ italic_ν / 2 ), and arrival time interval [tΔt/2,t+Δt/2)𝑡Δ𝑡2𝑡Δ𝑡2[t-\Delta t/2,t+\Delta t/2)[ italic_t - roman_Δ italic_t / 2 , italic_t + roman_Δ italic_t / 2 ).

The EBT can be accelerated by only emitting VPs with frequencies within a desired spectral range (e.g., 350010000Å350010000italic-Å3500-10000\ \AA3500 - 10000 italic_Å) for the synthetic observables, and by removing the VP once the integrated optical depth reaches a critical value τtot=10subscript𝜏𝑡𝑜𝑡10\tau_{tot}=10italic_τ start_POSTSUBSCRIPT italic_t italic_o italic_t end_POSTSUBSCRIPT = 10.We do not apply these optimizations in the present calculations, but Bulla etal. (2015) find that they can decrease the computational time by a factor of 4similar-toabsent4\sim 4∼ 4 while not affecting accuracy.

3 The Integral-Based Technique

Our proposed IBT uses integrated packets (IPs), which are an improved version of VPs that can be used to more efficiently construct spectra.Compared to VP, the major changes of IP are:(1) A VP stores the energy and polarization at a single frequency with a four-vector 𝑺VPsubscript𝑺𝑉𝑃\boldsymbol{S}_{VP}bold_italic_S start_POSTSUBSCRIPT italic_V italic_P end_POSTSUBSCRIPT, while an IP stores the energy and polarization at multiple frequency bins with a 4×N4𝑁4\times N4 × italic_N tensor of cell radiance 𝑹([I,Q,U,V];[ν1,,νN])𝑹𝐼𝑄𝑈𝑉subscript𝜈1subscript𝜈𝑁\boldsymbol{R}([I,Q,U,V];[\nu_{1},...,\nu_{N}])bold_italic_R ( [ italic_I , italic_Q , italic_U , italic_V ] ; [ italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ν start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ] );(2) The creation of a VP is based on the physical interactions of OPs, whereas an IP is created in each volume cell for each time step.

3.1 The Integrated Packets

The IP computation is based on a universal logarithmically spaced frequency grid [ν0,ν1νN]subscript𝜈0subscript𝜈1subscript𝜈𝑁[\nu_{0},\nu_{1}...\nu_{N}][ italic_ν start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_ν start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ].The frequency ratio between the adjacent pixels is a constant C𝐶Citalic_C, satisfying

νn+1/νn=C.subscript𝜈𝑛1subscript𝜈𝑛𝐶\nu_{n+1}/\nu_{n}=C.italic_ν start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT / italic_ν start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_C .(8)

Using this frequency grid, the Doppler shift of the variables could be simplified to the shifting of the index of the frequency bin, which saves computation time.

We define the cell radiance 𝑹(x,t,ν)𝑹𝑥𝑡𝜈\boldsymbol{R}(\vec{x},t,\nu)bold_italic_R ( over→ start_ARG italic_x end_ARG , italic_t , italic_ν ) in the lab frame for a cell located at coordinate x𝑥\vec{x}over→ start_ARG italic_x end_ARG and time t𝑡titalic_t as the energy radiated per frequency bin at frequency ν𝜈\nuitalic_ν toward the viewing direction, the units of 𝑹(x,t,ν)𝑹𝑥𝑡𝜈\boldsymbol{R}(\vec{x},t,\nu)bold_italic_R ( over→ start_ARG italic_x end_ARG , italic_t , italic_ν ) is ergHz1sr1ergsuperscriptHz1superscriptsr1\rm erg\ Hz^{-1}\ sr^{-1}roman_erg roman_Hz start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_sr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.The formal solution of the cell radiance is:

𝑹(x,t,ν)=ΔvΔts(ν¯ν)2(𝒋¯emi+𝒋¯sc)𝑹𝑥𝑡𝜈Δ𝑣Δsubscript𝑡𝑠superscript¯𝜈𝜈2subscript¯𝒋𝑒𝑚𝑖subscript¯𝒋𝑠𝑐\displaystyle\boldsymbol{R}(\vec{x},t,\nu)=\Delta v\Delta t_{s}\left(\frac{%\bar{\nu}}{\nu}\right)^{-2}\left(\bar{\boldsymbol{j}}_{emi}+\bar{\boldsymbol{j%}}_{sc}\right)bold_italic_R ( over→ start_ARG italic_x end_ARG , italic_t , italic_ν ) = roman_Δ italic_v roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( divide start_ARG over¯ start_ARG italic_ν end_ARG end_ARG start_ARG italic_ν end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( over¯ start_ARG bold_italic_j end_ARG start_POSTSUBSCRIPT italic_e italic_m italic_i end_POSTSUBSCRIPT + over¯ start_ARG bold_italic_j end_ARG start_POSTSUBSCRIPT italic_s italic_c end_POSTSUBSCRIPT )(9)
𝒋¯emi=j¯emi(x,t,ν¯)(1000)subscript¯𝒋𝑒𝑚𝑖subscript¯𝑗𝑒𝑚𝑖𝑥𝑡¯𝜈matrix1000\displaystyle\bar{\boldsymbol{j}}_{emi}=\bar{j}_{emi}(\vec{x},t,\bar{\nu})%\begin{pmatrix}1\\0\\0\\0\end{pmatrix}over¯ start_ARG bold_italic_j end_ARG start_POSTSUBSCRIPT italic_e italic_m italic_i end_POSTSUBSCRIPT = over¯ start_ARG italic_j end_ARG start_POSTSUBSCRIPT italic_e italic_m italic_i end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , over¯ start_ARG italic_ν end_ARG ) ( start_ARG start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARG )(10)
𝒋¯sc=αTΩ𝑰¯(x,t,θ¯in,φ¯in,ν¯)𝑷(θ¯in,φ¯in,θ¯,φ¯)𝑑Ω,subscript¯𝒋𝑠𝑐subscript𝛼𝑇subscriptΩ¯𝑰𝑥𝑡subscript¯𝜃𝑖𝑛subscript¯𝜑𝑖𝑛¯𝜈𝑷subscript¯𝜃𝑖𝑛subscript¯𝜑𝑖𝑛¯𝜃¯𝜑differential-dΩ\displaystyle\bar{\boldsymbol{j}}_{sc}=\alpha_{T}\int_{\Omega}\bar{\boldsymbol%{I}}(\vec{x},t,\bar{\theta}_{in},\bar{\varphi}_{in},\bar{\nu})\boldsymbol{P}(%\bar{\theta}_{in},\bar{\varphi}_{in},\bar{\theta},\bar{\varphi})d\Omega,over¯ start_ARG bold_italic_j end_ARG start_POSTSUBSCRIPT italic_s italic_c end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT over¯ start_ARG bold_italic_I end_ARG ( over→ start_ARG italic_x end_ARG , italic_t , over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_ν end_ARG ) bold_italic_P ( over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_θ end_ARG , over¯ start_ARG italic_φ end_ARG ) italic_d roman_Ω ,(11)

where 𝑰¯¯𝑰\bar{\boldsymbol{I}}over¯ start_ARG bold_italic_I end_ARG is the specific intensity as a four-vector of the Stokes parameters;ΔtsΔsubscript𝑡𝑠\Delta t_{s}roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is the size of the simulation time step;𝒋¯emisubscript¯𝒋𝑒𝑚𝑖\bar{\boldsymbol{j}}_{emi}over¯ start_ARG bold_italic_j end_ARG start_POSTSUBSCRIPT italic_e italic_m italic_i end_POSTSUBSCRIPT and 𝒋¯scsubscript¯𝒋𝑠𝑐\bar{\boldsymbol{j}}_{sc}over¯ start_ARG bold_italic_j end_ARG start_POSTSUBSCRIPT italic_s italic_c end_POSTSUBSCRIPT are the four-vectors of the emission terms due to depolarized isotropic emission and scattered light from Thomson scattering, respectively;the j¯emisubscript¯𝑗𝑒𝑚𝑖\bar{j}_{emi}over¯ start_ARG italic_j end_ARG start_POSTSUBSCRIPT italic_e italic_m italic_i end_POSTSUBSCRIPT function is the depolarized isotropic emission term, which includes all the emission from bound-bound, bound-free, and free-free transitions;the 𝑷(θ¯in,φ¯in,θ¯,φ¯)𝑷subscript¯𝜃𝑖𝑛subscript¯𝜑𝑖𝑛¯𝜃¯𝜑\boldsymbol{P}(\bar{\theta}_{in},\bar{\varphi}_{in},\bar{\theta},\bar{\varphi})bold_italic_P ( over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_θ end_ARG , over¯ start_ARG italic_φ end_ARG ) function is a combination of the Rayleigh scattering phase matrix and rotation matrix discussed in Appendix A;αTsubscript𝛼𝑇\alpha_{T}italic_α start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT is the extinction coefficient for Thomson scattering;the integral is over all the incident directions (θ¯in,φ¯insubscript¯𝜃𝑖𝑛subscript¯𝜑𝑖𝑛\bar{\theta}_{in},\bar{\varphi}_{in}over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT); the (ν¯/ν)2superscript¯𝜈𝜈2(\bar{\nu}/\nu)^{-2}( over¯ start_ARG italic_ν end_ARG / italic_ν ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT term is the correction of the Doppler effect (Castor e.g., 1972, eq.(1–3); see also Mihalas 1978, p.31,33,495–496).

For each IP, the cell radiance 𝑹𝑹\boldsymbol{R}bold_italic_R is calculated on the universal frequency grid and stored as a 4×N4𝑁4\times N4 × italic_N vector.During the propagation of an IP, 𝑹𝑹\boldsymbol{R}bold_italic_R is reduced by the extinction coefficient on the trajectory.The spectral synthesis is the summation of 𝑹𝑹\boldsymbol{R}bold_italic_R over the IPs at a specific arrival time.Section 3.2 and Section 3.3 illustrate the computation of 𝑹𝑹\boldsymbol{R}bold_italic_R in a MCRT simulation during the creation of an IP.Section 3.4 illustrates the update of 𝑹𝑹\boldsymbol{R}bold_italic_R during the propagation of IP and spectral synthesis.

3.2 Isotropic Emission

The isotropic emission term, including bound-bound, bound-free, and free-free interactions, can be calculated by the summation of the OPs from the same physical events

ΔvΔts(ν¯ν)2j¯emi(x,t,ν¯)=(ν¯ν)2iE¯OP,i4πΔν¯,Δ𝑣Δsubscript𝑡𝑠superscript¯𝜈𝜈2subscript¯𝑗𝑒𝑚𝑖𝑥𝑡¯𝜈superscript¯𝜈𝜈2subscript𝑖subscript¯𝐸𝑂𝑃𝑖4𝜋Δ¯𝜈\Delta v\Delta t_{s}\left(\frac{\bar{\nu}}{\nu}\right)^{-2}\bar{j}_{emi}(\vec{%x},t,\bar{\nu})=\left(\frac{\bar{\nu}}{\nu}\right)^{-2}\sum_{i}\frac{\bar{E}_{%OP,i}}{4\pi\Delta\bar{\nu}}\ ,roman_Δ italic_v roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( divide start_ARG over¯ start_ARG italic_ν end_ARG end_ARG start_ARG italic_ν end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT over¯ start_ARG italic_j end_ARG start_POSTSUBSCRIPT italic_e italic_m italic_i end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , over¯ start_ARG italic_ν end_ARG ) = ( divide start_ARG over¯ start_ARG italic_ν end_ARG end_ARG start_ARG italic_ν end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT divide start_ARG over¯ start_ARG italic_E end_ARG start_POSTSUBSCRIPT italic_O italic_P , italic_i end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_π roman_Δ over¯ start_ARG italic_ν end_ARG end_ARG ,(12)

where the summation is over all the OPs within the frequency bin [ν¯Δν¯/2,ν¯+Δν¯/2)¯𝜈Δ¯𝜈2¯𝜈Δ¯𝜈2[\bar{\nu}-\Delta\bar{\nu}/2,\bar{\nu}+\Delta\bar{\nu}/2)[ over¯ start_ARG italic_ν end_ARG - roman_Δ over¯ start_ARG italic_ν end_ARG / 2 , over¯ start_ARG italic_ν end_ARG + roman_Δ over¯ start_ARG italic_ν end_ARG / 2 ), the volume cell ΔvΔ𝑣\Delta vroman_Δ italic_v, and the time step bin [ts,ts+Δts)subscript𝑡𝑠subscript𝑡𝑠Δsubscript𝑡𝑠[t_{s},t_{s}+\Delta t_{s})[ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ).Only OPs that are newly created or undergone the same physical events are taken into account.

In the present SEDONA calculation, we include bound-free and free-free transitions and adopt the line expansion opacity approximation (Kasen etal. 2006, eq.(8)) for bound-bound transitions which are treated as purely absorptive.Therefore, the isotropic emission term is calculated from the current plasma state as j¯emi(x,t,ν¯)=B(ν¯)α¯abs(x,t,ν¯)subscript¯𝑗𝑒𝑚𝑖𝑥𝑡¯𝜈𝐵¯𝜈subscript¯𝛼𝑎𝑏𝑠𝑥𝑡¯𝜈\bar{j}_{emi}(\vec{x},t,\bar{\nu})=B(\bar{\nu})\bar{\alpha}_{abs}(\vec{x},t,%\bar{\nu})over¯ start_ARG italic_j end_ARG start_POSTSUBSCRIPT italic_e italic_m italic_i end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , over¯ start_ARG italic_ν end_ARG ) = italic_B ( over¯ start_ARG italic_ν end_ARG ) over¯ start_ARG italic_α end_ARG start_POSTSUBSCRIPT italic_a italic_b italic_s end_POSTSUBSCRIPT ( over→ start_ARG italic_x end_ARG , italic_t , over¯ start_ARG italic_ν end_ARG ), where B(ν¯)𝐵¯𝜈B(\bar{\nu})italic_B ( over¯ start_ARG italic_ν end_ARG ) is the blackbody spectrum and α¯abssubscript¯𝛼𝑎𝑏𝑠\bar{\alpha}_{abs}over¯ start_ARG italic_α end_ARG start_POSTSUBSCRIPT italic_a italic_b italic_s end_POSTSUBSCRIPT is the total extinction coefficient including bound-bound, bound-free, and free-free transitions (Thomson scattering is not included in this term).

3.3 The Path Integral

The cell radiance from Thomson scattering is calculated from the path integral of the OPs

ΔvΔts(ν¯ν)2𝒋¯sc=i,jE¯id¯i,jα¯T𝒔¯i,j𝑷(θ¯i,j,φ¯i,j,θ¯,φ¯)4πΔν¯Δ𝑣Δsubscript𝑡𝑠superscript¯𝜈𝜈2subscript¯𝒋𝑠𝑐subscript𝑖𝑗subscript¯𝐸𝑖subscript¯𝑑𝑖𝑗subscript¯𝛼𝑇subscript¯𝒔𝑖𝑗𝑷subscript¯𝜃𝑖𝑗subscript¯𝜑𝑖𝑗¯𝜃¯𝜑4𝜋Δ¯𝜈\Delta v\Delta t_{s}\left(\frac{\bar{\nu}}{\nu}\right)^{-2}\bar{\boldsymbol{j}%}_{sc}=\frac{\sum_{i,j}\bar{E}_{i}\bar{d}_{i,j}\bar{\alpha}_{T}\bar{%\boldsymbol{s}}_{i,j}\boldsymbol{P}(\bar{\theta}_{i,j},\bar{\varphi}_{i,j},%\bar{\theta},\bar{\varphi})}{4\pi\Delta\bar{\nu}}roman_Δ italic_v roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( divide start_ARG over¯ start_ARG italic_ν end_ARG end_ARG start_ARG italic_ν end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT over¯ start_ARG bold_italic_j end_ARG start_POSTSUBSCRIPT italic_s italic_c end_POSTSUBSCRIPT = divide start_ARG ∑ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT over¯ start_ARG italic_E end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT over¯ start_ARG italic_d end_ARG start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT over¯ start_ARG italic_α end_ARG start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT over¯ start_ARG bold_italic_s end_ARG start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT bold_italic_P ( over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT , over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT , over¯ start_ARG italic_θ end_ARG , over¯ start_ARG italic_φ end_ARG ) end_ARG start_ARG 4 italic_π roman_Δ over¯ start_ARG italic_ν end_ARG end_ARG(13)

where d¯i,jsubscript¯𝑑𝑖𝑗\bar{d}_{i,j}over¯ start_ARG italic_d end_ARG start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT is the co-moving frame length of the j𝑗jitalic_j-th line segment of the i𝑖iitalic_i-th OP trajectory in the volume cell and in the time step, the summation is over all the trajectories within the frequency bin [ν¯Δν¯/2,ν¯+Δν¯/2)¯𝜈Δ¯𝜈2¯𝜈Δ¯𝜈2[\bar{\nu}-\Delta\bar{\nu}/2,\bar{\nu}+\Delta\bar{\nu}/2)[ over¯ start_ARG italic_ν end_ARG - roman_Δ over¯ start_ARG italic_ν end_ARG / 2 , over¯ start_ARG italic_ν end_ARG + roman_Δ over¯ start_ARG italic_ν end_ARG / 2 ), the volume cell ΔvΔ𝑣\Delta vroman_Δ italic_v, the time step bin [ts,ts+Δts)subscript𝑡𝑠subscript𝑡𝑠Δsubscript𝑡𝑠[t_{s},t_{s}+\Delta t_{s})[ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ).

For each volume cell and at each time step, an IP is created.The initial coordinate of the IP is randomly chosen in the volume cell, and the initial time of the IP is randomly chosen in the time step.The cell radiance 𝑹𝑹\boldsymbol{R}bold_italic_R is calculated on the universal frequency grid and stored in IP as a 4×N4𝑁4\times N4 × italic_N tensor.

3.4 The Propagation of Integral Packets

After creation, the IPs propagate toward the viewer with the speed of light, and the cell radiance 𝑹𝑹\boldsymbol{R}bold_italic_R is reduced during propagation.Similar to the propagation of the VPs, the trajectory of an IP is split into line segments by the edges of time steps and volume cells.Moreover, the trajectory is further split to satisfy the criterion:

|ν¯beginν¯endν¯end|C1,subscript¯𝜈𝑏𝑒𝑔𝑖𝑛subscript¯𝜈𝑒𝑛𝑑subscript¯𝜈𝑒𝑛𝑑𝐶1\left|\frac{\bar{\nu}_{begin}-\bar{\nu}_{end}}{\bar{\nu}_{end}}\right|\leq C-1,\ | divide start_ARG over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_b italic_e italic_g italic_i italic_n end_POSTSUBSCRIPT - over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e italic_n italic_d end_POSTSUBSCRIPT end_ARG start_ARG over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e italic_n italic_d end_POSTSUBSCRIPT end_ARG | ≤ italic_C - 1 ,(14)

where ν¯beginsubscript¯𝜈𝑏𝑒𝑔𝑖𝑛\bar{\nu}_{begin}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_b italic_e italic_g italic_i italic_n end_POSTSUBSCRIPT is the co-moving frame frequency at the beginning of the line segment, ν¯endsubscript¯𝜈𝑒𝑛𝑑\bar{\nu}_{end}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e italic_n italic_d end_POSTSUBSCRIPT is the co-moving frame frequency of the same lab frame frequency ν𝜈\nuitalic_ν at the ending of the line segment, the constant C𝐶Citalic_C is defined in Equation 8.

In the calculation of VP in Equation 5 and 7, the total opacity is accumulated over the trajectory, which computationally requires one more double precision floating point number per VP to store the opacity.This process reduces the computation time on exponentials at the cost of memory space.While in the propagation of IPs, the cell radiance is updated at every line segment on the trajectory without accumulating the total opacity over the trajectory

𝑹i,j+1(ν)=𝑹i,j(ν)edi,jαtot,i,j(ν),subscript𝑹𝑖𝑗1𝜈subscript𝑹𝑖𝑗𝜈superscript𝑒subscript𝑑𝑖𝑗subscript𝛼𝑡𝑜𝑡𝑖𝑗𝜈\boldsymbol{R}_{i,j+1}(\nu)=\boldsymbol{R}_{i,j}(\nu)e^{-d_{i,j}\alpha_{tot,i,%j}(\nu)}\ ,bold_italic_R start_POSTSUBSCRIPT italic_i , italic_j + 1 end_POSTSUBSCRIPT ( italic_ν ) = bold_italic_R start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ( italic_ν ) italic_e start_POSTSUPERSCRIPT - italic_d start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT italic_t italic_o italic_t , italic_i , italic_j end_POSTSUBSCRIPT ( italic_ν ) end_POSTSUPERSCRIPT ,(15)

where di,jsubscript𝑑𝑖𝑗d_{i,j}italic_d start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT is the length of the i𝑖iitalic_i-th IP at the j𝑗jitalic_j-th line segment over the trajectory, αtot,i,j(ν)subscript𝛼𝑡𝑜𝑡𝑖𝑗𝜈\alpha_{tot,i,j}(\nu)italic_α start_POSTSUBSCRIPT italic_t italic_o italic_t , italic_i , italic_j end_POSTSUBSCRIPT ( italic_ν ) is the total extinction coefficient of the i𝑖iitalic_i-th IP at the j𝑗jitalic_j-th line segment and at lab frame frequency ν𝜈\nuitalic_ν.The final spectrum is the sum of the IPs:

(𝒬𝒰𝒱)=14πr2Δti𝑹i,final,matrix𝒬𝒰𝒱14𝜋superscript𝑟2Δ𝑡subscript𝑖subscript𝑹𝑖𝑓𝑖𝑛𝑎𝑙\begin{pmatrix}\mathcal{I}\\\mathcal{Q}\\\mathcal{U}\\\mathcal{V}\end{pmatrix}=\frac{1}{4\pi r^{2}\Delta t}\sum_{i}\boldsymbol{R}_{i%,final}\ ,( start_ARG start_ROW start_CELL caligraphic_I end_CELL end_ROW start_ROW start_CELL caligraphic_Q end_CELL end_ROW start_ROW start_CELL caligraphic_U end_CELL end_ROW start_ROW start_CELL caligraphic_V end_CELL end_ROW end_ARG ) = divide start_ARG 1 end_ARG start_ARG 4 italic_π italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ italic_t end_ARG ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT bold_italic_R start_POSTSUBSCRIPT italic_i , italic_f italic_i italic_n italic_a italic_l end_POSTSUBSCRIPT ,(16)

where 𝑹i,finalsubscript𝑹𝑖𝑓𝑖𝑛𝑎𝑙\boldsymbol{R}_{i,final}bold_italic_R start_POSTSUBSCRIPT italic_i , italic_f italic_i italic_n italic_a italic_l end_POSTSUBSCRIPT is the final cell radiance when the i𝑖iitalic_i-th IP escapes the simulation domain.The summation is over all IPs in the arrival time interval [tΔt/2,t+Δt/2)𝑡Δ𝑡2𝑡Δ𝑡2[t-\Delta t/2,t+\Delta t/2)[ italic_t - roman_Δ italic_t / 2 , italic_t + roman_Δ italic_t / 2 ).Note that the grid size of arrival time ΔtΔ𝑡\Delta troman_Δ italic_t should be much larger than the time step size ΔtsΔsubscript𝑡𝑠\Delta t_{s}roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT to avoid grid mismatch issue, while this issue is not significant in DCT or EBT calculations.

4 Model Validation

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (1)

In this section, we prepare two toy models to validate the IBT computation results.The first model is the SNIa delayed-detonation model DDC10.DDC10 is calculated from hydrodynamic simulations in Blondin etal. (2013) and adopted as a benchmark in Blondin etal. (2022) to evaluate the differences between radiative transfer codes.We remap the 1-D model into a 60×60×6060606060\times 60\times 6060 × 60 × 60 3-D Cartesian grid.retaining the spherical symmetry and with the outer boundary velocity limited to 25,000 km/s.Figure 1 shows the abundance of several elements and the density profile of the DDC10 model.The second model is an ellipsoidal model based on the DDC10 model; the y and z coordinates are reprojected with ynew=1.3ysubscript𝑦𝑛𝑒𝑤1.3𝑦y_{new}=1.3yitalic_y start_POSTSUBSCRIPT italic_n italic_e italic_w end_POSTSUBSCRIPT = 1.3 italic_y and znew=z/1.3subscript𝑧𝑛𝑒𝑤𝑧1.3z_{new}=z/1.3italic_z start_POSTSUBSCRIPT italic_n italic_e italic_w end_POSTSUBSCRIPT = italic_z / 1.3, in order to introduce asphericity.This model is also realized on a 60×60×6060606060\times 60\times 6060 × 60 × 60 Cartesian grid, with a boundary velocity of 32,500 km/s.The geometry of the model is shown in the right panel of Figure 1.

In the following text, the spherical symmetric DDC10 model is denoted as D1D, and the modified ellipsoidal 3-D model is denoted as D3D.Both the models are treated with 3-D time-dependent radiative transfer calculations in SEDONA starting from 0.976 days after the explosion.Before 6.6 days, the simulation time step is a logarithmic with Δts/ts=0.03Δsubscript𝑡𝑠subscript𝑡𝑠0.03\Delta t_{s}/t_{s}=0.03roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 0.03.After 6.6 days, the simulation time step is Δts=0.2Δsubscript𝑡𝑠0.2\Delta t_{s}=0.2roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 0.2 days.The arrival time bin size is Δt=1Δ𝑡1\Delta t=1roman_Δ italic_t = 1 day, which satisfies Δt5ΔtsΔ𝑡5Δsubscript𝑡𝑠\Delta t\geq 5\Delta t_{s}roman_Δ italic_t ≥ 5 roman_Δ italic_t start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT.The frequency grid ranges from 1×10141superscript10141\times 10^{14}1 × 10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT Hz to 5×10155superscript10155\times 10^{15}5 × 10 start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT Hz (30,000 Åitalic-Å\AAitalic_Å to 600 Åitalic-Å\AAitalic_Å) with Δν/ν=0.002Δ𝜈𝜈0.002\Delta\nu/\nu=0.002roman_Δ italic_ν / italic_ν = 0.002.

4.1 Spherical Symmetry

Because the linear polarization components cancel out, a spherical symmetric model should produce zero polarization.Using IBT, we calculate the spectropolarimetry of the D1D model to test if the algorithm recovers zero polarization.Figure 2 shows the spectra and the polarization percentage at different times after the explosion.At each time step, 6×1066superscript1066\times 10^{6}6 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT OPs are generated to represent the energy release from radioactive decay and gamma-ray scattering.We find that the polarization signal at all times and wavelengths is consistent with the expected zero polarization.Moreover, the simulation error between 7 days and 31 days and between 2000 and 10000 Åitalic-Å\AAitalic_Å wavelength range (within which most SNe Ia spectropolarimetry observations are made (Cikota etal., 2019)) is as low as 0.2%similar-toabsentpercent0.2\sim 0.2\%∼ 0.2 %.Notably, the spectra in the ultraviolet wavelength between 7 days and 21 days also show high S/N, despite the emergent flux being low in this band.In the early phase of SNe Ia, most of the OPs are generated below the photosphere, therefore the cell radiance 𝑹𝑹\boldsymbol{R}bold_italic_R above the photosphere has low S/N.As a result, the spectrum shows low S/N at 3-4 days after the explosion.Moreover, the S/N in the infrared wavelength is lower than that in the optical wavelength, because most of the OPs are in the optical wavelength.Due to the limited number of OPs in the ultraviolet wavelength at late phase, the ultraviolet spectrum at 30-31 days and after is dominated by Monte-Carlo noise.In the IBT simulation of this paper, this phenomenon is only observed below 2000 ÅÅ\rm\AAroman_Å and can be alleviated by increasing the number of OPs.

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (2)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (3)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (4)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (5)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (6)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (7)

4.2 Mirror Symmetry

In this section, we use IBT to calculate the spectropolarimetry at two mirror symmetric viewing directions of the D3D model.At each time step we generate 1×1071superscript1071\times 10^{7}1 × 10 start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT OPs.Based on the mirror symmetry of the D3D model in the X-Z, Y-Z, and X-Y planes, spectropolarimetry in the viewing directions (cos(θ)=0.51122,φ=π/6)formulae-sequence𝑐𝑜𝑠𝜃0.51122𝜑𝜋6(cos(\theta)=0.51122,\ \varphi=\pi/6)( italic_c italic_o italic_s ( italic_θ ) = 0.51122 , italic_φ = italic_π / 6 ) and (cos(θ)=0.51122,φ=11π/6)formulae-sequence𝑐𝑜𝑠𝜃0.51122𝜑11𝜋6(cos(\theta)=0.51122,\ \varphi=11\pi/6)( italic_c italic_o italic_s ( italic_θ ) = 0.51122 , italic_φ = 11 italic_π / 6 ) should have the same Stokes 𝒬𝒬\mathcal{Q}caligraphic_Q terms and inverted 𝒰𝒰\mathcal{U}caligraphic_U terms.Figure 3 shows the spectropolarimetry at the two symmetric viewing directions.We notice the simulation results are consistent with the theoretical expectations of the symmetry at above 2000 ÅÅ\rm\AAroman_Å wavelength from early phase (7-8 days after the explosion) to late phase (50-51 days after explosion).Similar to the spherical symmetric validation results in Figure 2, the ultraviolet spectropolarimetry below 2000 ÅÅ\rm\AAroman_Å after similar-to\sim25 days are dominated by Monte-Carlo noise.Moreover, ultraviolet spectropolarimetry at 7-8 days and 15-16 days shows an exceptional high S/N.

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (8)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (9)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (10)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (11)

4.3 Cross Comparison

In this section, we compare the simulation results from the EBT, IBT, and DCT methods using the D3D model.Figure 4 shows the spectra and linear polarization time sequence calculated by the three methods.In the DCT calculation, the viewing direction is split into a 10×10101010\times 1010 × 10 bin and 4.6×1084.6superscript1084.6\times 10^{8}4.6 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT OPs are generated per time step to achieve a reasonable S/N.For the EBT and IBT calculations, we only generate 4×1064superscript1064\times 10^{6}4 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT OPs per time step.Figure 4 shows that the IBT calculation produced spectra and polarization with a S/N comparable to a DCT calculation that used 115similar-toabsent115\sim 115∼ 115 times more OPs.This noise reduction holds from 6 days to 33 days after the explosion and from ultraviolet to infrared wavelengths.

Due to the high opacity at the early phase of SN, the OPs undergo multiple scattering events near the core of SN, which results in a rapidly growing number of VPs in the EBT calculation and an increasing memory usage expense.Therefore, in this example EBT calculation we started the calculation at 25 days after the explosion due to the limit of hardware.

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (12)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (13)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (14)

5 Computational Performance

5.1 Computational Speed Comparison

The computational speed of the three methods is measured on one 48-core compute node of Grace supercomputer in TAMU HPRC 111https://hprc.tamu.edu/.Each node has 2 sockets of Intel Xeon 6248R CPUs, in total 48 cores, and has 384 GBs of RAM memory.The majority of the computation time in a 3-D time-dependent radiative transfer computation consists of two components: (1) the computation of the plasma state, level population, and opacity of the grid; (2) the propagation of energy packets including OPs, VPs, or IPs.The choice of spectral synthesis methods only affects the propagation time of the energy packets.

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (15)

Figure 5 shows the computation time of particle propagation at each time step as a function of the time after explosion using the EBT and IBT methods as described in Section 4.3, and the corresponding DCT computation time with 4×1064superscript1064\times 10^{6}4 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT OPs per time step, the same number of OPs as the EBT and IBT results.The time needed to compute the plasma state and opacity does not change drastically at different time steps.In contrast, the computation time for packet propagation increases in the first similar-to\sim 3 days, because the optical depth is high and the OPs cannot easily escape the SN ejecta and undergo repeated interaction events.With the expansion of the SN ejecta, the optical depth decreases, and the accumulated OPs escape the SN ejecta, therefore the computation time decreases.In particular, the computation time for EBT is a factor of similar-to\sim 30 higher than DCT around 25 days after the explosion, and is a factor of similar-to\sim 10 higher than DCT around 60 days.In contrast, the introduction of IBT only increases the computation time by a factor of 0.3-0.5 of the DCT computation time, throughout the time after the SN explosion, to reach a comparable S/N as EBT.

5.2 Signal to Noise Ratio

In an MCRT simulation, the output spectral flux error scales roughly as σNproportional-to𝜎𝑁\sigma\propto\sqrt{N}italic_σ ∝ square-root start_ARG italic_N end_ARG, where N𝑁Nitalic_N is the number of photon packets.We therefore use the simulation results on the D1D model to measure the simulation error of the three spectral retrieval methods.First, we split the output spectra into ultraviolet wavelength range (1000-2000 Åitalic-Å\AAitalic_Å), optical wavelength range (2000-10000 Åitalic-Å\AAitalic_Å), and infrared wavelength range (10000-25000 Åitalic-Å\AAitalic_Å).Second, we measure the simulation root mean squared error (RMSE) of the Stokes parameters 𝒬𝒬\mathcal{Q}caligraphic_Q and 𝒰𝒰\mathcal{U}caligraphic_U using the following equation:

RMSE=Nν(𝒬(ν)(ν)0)2+(𝒰(ν)(ν)0)2Nν,𝑅𝑀𝑆𝐸subscriptsubscript𝑁𝜈superscript𝒬𝜈𝜈02superscript𝒰𝜈𝜈02subscript𝑁𝜈RMSE=\sqrt{\sum_{N_{\nu}}\frac{\left(\frac{\mathcal{Q}(\nu)}{\mathcal{I}(\nu)}%-0\right)^{2}+\left(\frac{\mathcal{U}(\nu)}{\mathcal{I}(\nu)}-0\right)^{2}}{N_%{\nu}}}\ ,italic_R italic_M italic_S italic_E = square-root start_ARG ∑ start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG ( divide start_ARG caligraphic_Q ( italic_ν ) end_ARG start_ARG caligraphic_I ( italic_ν ) end_ARG - 0 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( divide start_ARG caligraphic_U ( italic_ν ) end_ARG start_ARG caligraphic_I ( italic_ν ) end_ARG - 0 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_N start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG end_ARG ,(17)

where Nνsubscript𝑁𝜈N_{\nu}italic_N start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT is the number of frequency indicies in the selected wavelength range, the summation is over all frequency indicies in the selected wavelength range.Note that the theoretical solution of the D1D model is no polarization which results in the zero term in the equation.The RMSE observes the inverse square root relation with the number of packets, RMSEN0.5proportional-to𝑅𝑀𝑆𝐸superscript𝑁0.5RMSE\propto N^{-0.5}italic_R italic_M italic_S italic_E ∝ italic_N start_POSTSUPERSCRIPT - 0.5 end_POSTSUPERSCRIPT.

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (16)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (17)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (18)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (19)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (20)

An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (21)

Figure 6 shows the relationship between the number of OPs per time step and the resulting RMSE at 10-11 days after the explosion using DCT or IBT, and at 37-38 days after the explosion using DCT, EBT, or IBT.We notice the result from IBT could reproduce the RMSEN0.5proportional-to𝑅𝑀𝑆𝐸superscript𝑁0.5RMSE\propto N^{-0.5}italic_R italic_M italic_S italic_E ∝ italic_N start_POSTSUPERSCRIPT - 0.5 end_POSTSUPERSCRIPT relation in most of the time and wavelength ranges.The DCT result also reproduces the relation RMSEN0.5proportional-to𝑅𝑀𝑆𝐸superscript𝑁0.5RMSE\propto N^{-0.5}italic_R italic_M italic_S italic_E ∝ italic_N start_POSTSUPERSCRIPT - 0.5 end_POSTSUPERSCRIPT in the optical and infrared wavelength ranges when the number of packets is large enough.However, in the ultraviolet wavelength, and in the optical wavelength with the number of packets per step smaller than 4×105similar-toabsent4superscript105\sim 4\times 10^{5}∼ 4 × 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT, the inverse square root relation is not observed due to the large simulation error.The result from EBT also reproduces the RMSEN0.5proportional-to𝑅𝑀𝑆𝐸superscript𝑁0.5RMSE\propto N^{-0.5}italic_R italic_M italic_S italic_E ∝ italic_N start_POSTSUPERSCRIPT - 0.5 end_POSTSUPERSCRIPT relation in optical ind infrared wavelength ranges at 37-38 days after the explosion.In the ultraviolet wavelength range at 37-38 days after the explosion, none of the methods could simulate good S/N spectra to reproduce the RMSEN0.5proportional-to𝑅𝑀𝑆𝐸superscript𝑁0.5RMSE\propto N^{-0.5}italic_R italic_M italic_S italic_E ∝ italic_N start_POSTSUPERSCRIPT - 0.5 end_POSTSUPERSCRIPT relation.

A direct comparison of the computation efficiency of the three methods could be made using the RMSE values measured in the optical and infrared wavelength range.The RMSE of IBT is smaller than that of DCT by a factor of 2030203020-3020 - 30, leading to a factor of 400900400900400-900400 - 900 less packets needed to calculate to reach similar S/N.The RMSE of EBT is smaller than that of DCT by a factor of 5105105-105 - 10, resulting in a factor of 251002510025-10025 - 100 less packets to calculate to achieve a comparable S/N.The accuracy comparison between EBT and IBT is consistent with the reports in Table 1 of Bulla etal. (2015).

6 Conclusion

We present IBT, an algorithm to efficiently synthesize the spectropolarimetry signal from 3-D MCRT simulations.Comparing to EBT (Bulla etal., 2015), the present IBT method is upgraded in the following aspects:

  • In EBT, a VP is created at each scattering event of an OP, which could lead to an uncontrolled number of VPs and limit the application of EBT on high-opacity plasma models (i.e. SNe Ia at similar-to\sim3 days after the explosion). However, IBT uses the cell radiance 𝐑(x,t,ν)𝐑𝑥𝑡𝜈\mathbf{R}(\vec{x},t,\nu)bold_R ( over→ start_ARG italic_x end_ARG , italic_t , italic_ν ) as a proxy of all VPs in a volume cell of the plasma model, and limits the number of IPs to save memory and computation time in tracing the particles.

  • The frequency grid in IBT is logarithmically spaced (Equation 8), which simplifies the Doppler shift of cell radiance 𝐑(x,t,ν)𝐑𝑥𝑡𝜈\mathbf{R}(\vec{x},t,\nu)bold_R ( over→ start_ARG italic_x end_ARG , italic_t , italic_ν ) to re-indexing the pixel. Therefore, the computation of Equation 15 is simplified to vector operations. This upgrade further accelerates the computation of IP propagation.

In the tests on the D3D model, both IBT and EBT have successfully reproduced the spectral time sequence with spectropolarimetry from 1000Åto 25000Å, and the S/N is comparable to DCT with similar-to\sim115 more Monte-Carlo OPs.The computation time for IBT is similar-to\sim 0.3 of DCT with the same number of OPs per viewing direction, while the computation time for EBT is a factor of 1030103010-3010 - 30 of DCT per viewing direction.With an opacity limit and wavelength limit to accelerate the computation, the EBT computation time is still about a factor of two of DCT per viewing direction(Bulla etal., 2015).Moreover, IBT has successfully calculated the spectral time sequence from 1 day to 60 days after the explosion, while EBT failed before day 25 due to the limited memory space of the computing facility.

In the tests on the D1D model, IBT has successfully reproduced the zero polarization signal as the theoretical predictions from the spherical symmetry.Using the same number of Monte-Carlo OPs, the S/N of the IBT spectrum is similar-to\sim 30 times higher than the DCT spectrum S/N and 5105105-105 - 10 times higher than the EBT spectrum.

Chen etal. (2020, 2024) developed theArtificial Intelligence Assisted Inversion (AIAI) method which enables theoretical models of SNeIa to be derived using the observational data as input constraints.The published AIAI is based on 1-D models.The studies demonstrate that it is possible to combine empirical models of SNeIa with detailed radiative transfer code to improve the use of SNeIa as cosmological probes.In the future, we will extend the 1-D models to 3-D time-dependent models.The proposed IBT is the ideal algorithm to efficiently generate a time sequence of spectrophotometric and spectropolarimetric data bases which can be used to train AI models, this can be an important step in assimilating the extensive observational data of SNeIa into studies of the physics of thermonuclear explosions and the use of SNeIa as cosmological distance candles.

X.C. is supported by the grant NSF-AST 1817099.The authors would like to thank Prof. J. C. Wheeler from University of Texas at Austin and Prof. David Jeffery from University of Nevada at Las Vegas for supportive discussions.Portions of this research were conducted with the advanced computing resources provided by Texas A&M High Performance Research Computing.This work used FASTER super computer at TAMU HPRC through allocation PHY240215 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants 2138259, 2138286, 2138307, 2137603, and 2138296(Boerner etal., 2023).

Appendix A Rayleigh Scattering

The Thomson scattering between free electron and photon is calculated by the Rayleigh scattering phase matrix:

𝑷R(Θ)=34(cos2Θ+1cos2Θ100cos2Θ1cos2Θ+100002cosΘ00002cosΘ),subscript𝑷𝑅Θ34matrix𝑐𝑜superscript𝑠2Θ1𝑐𝑜superscript𝑠2Θ100𝑐𝑜superscript𝑠2Θ1𝑐𝑜superscript𝑠2Θ100002𝑐𝑜𝑠Θ00002𝑐𝑜𝑠Θ\boldsymbol{P}_{R}(\Theta)=\frac{3}{4}\begin{pmatrix}cos^{2}\Theta+1&cos^{2}%\Theta-1&0&0\\cos^{2}\Theta-1&cos^{2}\Theta+1&0&0\\0&0&2cos\Theta&0\\0&0&0&2cos\Theta\\\end{pmatrix}\ ,bold_italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( roman_Θ ) = divide start_ARG 3 end_ARG start_ARG 4 end_ARG ( start_ARG start_ROW start_CELL italic_c italic_o italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Θ + 1 end_CELL start_CELL italic_c italic_o italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Θ - 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_c italic_o italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Θ - 1 end_CELL start_CELL italic_c italic_o italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Θ + 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 2 italic_c italic_o italic_s roman_Θ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 2 italic_c italic_o italic_s roman_Θ end_CELL end_ROW end_ARG ) ,(A1)

where ΘΘ\Thetaroman_Θ is the angle between the incident light and the emergent light.Before the calculation of Rayleigh scattering phase matrix, the reference axis of the incident light should be rotated into the scattering plane, and the polarization state is changed by the rotation matrix:

𝑳(ϕin)=(10000cos2ϕinsin2ϕin00sin2ϕincos2ϕin00001),𝑳subscriptitalic-ϕ𝑖𝑛matrix10000𝑐𝑜𝑠2subscriptitalic-ϕ𝑖𝑛𝑠𝑖𝑛2subscriptitalic-ϕ𝑖𝑛00𝑠𝑖𝑛2subscriptitalic-ϕ𝑖𝑛𝑐𝑜𝑠2subscriptitalic-ϕ𝑖𝑛00001\boldsymbol{L}(\phi_{in})=\begin{pmatrix}1&0&0&0\\0&cos2\phi_{in}&sin2\phi_{in}&0\\0&-sin2\phi_{in}&cos2\phi_{in}&0\\0&0&0&1\\\end{pmatrix}\ ,bold_italic_L ( italic_ϕ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT ) = ( start_ARG start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_c italic_o italic_s 2 italic_ϕ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_s italic_i italic_n 2 italic_ϕ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - italic_s italic_i italic_n 2 italic_ϕ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_c italic_o italic_s 2 italic_ϕ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ) ,(A2)

where ϕinsubscriptitalic-ϕ𝑖𝑛\phi_{in}italic_ϕ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT is the rotation angle between the observer’s reference axis and the scattering plane reference axis.A similar rotation matrix of 𝑳(πϕout)𝑳𝜋subscriptitalic-ϕ𝑜𝑢𝑡\boldsymbol{L}(\pi-\phi_{out})bold_italic_L ( italic_π - italic_ϕ start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT ) is also applied to the emergent light, in order to convert the polarization state to the observer’s reference axis.

We define 𝑺¯¯𝑺\bar{\boldsymbol{S}}over¯ start_ARG bold_italic_S end_ARG as the multiplication of the packet energy and the dimensionless Stokes vector:

𝑺¯=(I¯Q¯U¯V¯)=E¯𝒔¯.¯𝑺matrix¯𝐼¯𝑄¯𝑈¯𝑉¯𝐸¯𝒔\bar{\boldsymbol{S}}=\begin{pmatrix}\bar{I}\\\bar{Q}\\\bar{U}\\\bar{V}\end{pmatrix}\ =\bar{E}\bar{\boldsymbol{s}}\ .over¯ start_ARG bold_italic_S end_ARG = ( start_ARG start_ROW start_CELL over¯ start_ARG italic_I end_ARG end_CELL end_ROW start_ROW start_CELL over¯ start_ARG italic_Q end_ARG end_CELL end_ROW start_ROW start_CELL over¯ start_ARG italic_U end_ARG end_CELL end_ROW start_ROW start_CELL over¯ start_ARG italic_V end_ARG end_CELL end_ROW end_ARG ) = over¯ start_ARG italic_E end_ARG over¯ start_ARG bold_italic_s end_ARG .(A3)

Therefore, the full Rayleigh scattering formula in the SN radiative transfer simulation is written as:

𝑺¯out=𝑳(πϕ¯out)𝑷R(Θ¯)𝑳(ϕ¯in)𝑺¯in.subscript¯𝑺𝑜𝑢𝑡𝑳𝜋subscript¯italic-ϕ𝑜𝑢𝑡subscript𝑷𝑅¯Θ𝑳subscript¯italic-ϕ𝑖𝑛subscript¯𝑺𝑖𝑛\bar{\boldsymbol{S}}_{out}=\boldsymbol{L}(\pi-\bar{\phi}_{out})\boldsymbol{P}_%{R}(\bar{\Theta})\boldsymbol{L}(\bar{\phi}_{in})\bar{\boldsymbol{S}}_{in}\ .over¯ start_ARG bold_italic_S end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT = bold_italic_L ( italic_π - over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT ) bold_italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( over¯ start_ARG roman_Θ end_ARG ) bold_italic_L ( over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT ) over¯ start_ARG bold_italic_S end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT .(A4)

Note that the Rayleigh scattering happens in the co-moving frame, and all the variables in the above equation are measured in the co-moving frame.In Equation 3, Equation 9, and Equation 13, the operator is defined as 𝑷(θ¯in,ϕ¯in,θ¯out,ϕ¯out)=𝑳(πϕ¯out)𝑷R(Θ¯)𝑳(ϕ¯in)𝑷subscript¯𝜃𝑖𝑛subscript¯italic-ϕ𝑖𝑛subscript¯𝜃𝑜𝑢𝑡subscript¯italic-ϕ𝑜𝑢𝑡𝑳𝜋subscript¯italic-ϕ𝑜𝑢𝑡subscript𝑷𝑅¯Θ𝑳subscript¯italic-ϕ𝑖𝑛\boldsymbol{P}(\bar{\theta}_{in},\bar{\phi}_{in},\bar{\theta}_{out},\bar{\phi}%_{out})=\boldsymbol{L}(\pi-\bar{\phi}_{out})\boldsymbol{P}_{R}(\bar{\Theta})%\boldsymbol{L}(\bar{\phi}_{in})bold_italic_P ( over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT , over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT ) = bold_italic_L ( italic_π - over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT ) bold_italic_P start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( over¯ start_ARG roman_Θ end_ARG ) bold_italic_L ( over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT ).

Replacing the axis rotation angles and scatter angle (ϕ¯insubscript¯italic-ϕ𝑖𝑛\bar{\phi}_{in}over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT, ϕ¯outsubscript¯italic-ϕ𝑜𝑢𝑡\bar{\phi}_{out}over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT, Θ¯¯Θ\bar{\Theta}over¯ start_ARG roman_Θ end_ARG) with the propagating direction of the incident OP (θ¯insubscript¯𝜃𝑖𝑛\bar{\theta}_{in}over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT, φ¯insubscript¯𝜑𝑖𝑛\bar{\varphi}_{in}over¯ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT) and the propagating direction of the emergent VP/IP (θ¯¯𝜃\bar{\theta}over¯ start_ARG italic_θ end_ARG, φ¯¯𝜑\bar{\varphi}over¯ start_ARG italic_φ end_ARG), the expression of the operator 𝑷(θ¯in,ϕ¯in,θ¯,ϕ¯)𝑷subscript¯𝜃𝑖𝑛subscript¯italic-ϕ𝑖𝑛¯𝜃¯italic-ϕ\boldsymbol{P}(\bar{\theta}_{in},\bar{\phi}_{in},\bar{\theta},\bar{\phi})bold_italic_P ( over¯ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT , over¯ start_ARG italic_θ end_ARG , over¯ start_ARG italic_ϕ end_ARG ) becomes (Chandrasekhar, 1960):

I¯outsubscript¯𝐼𝑜𝑢𝑡\displaystyle\bar{I}_{out}over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT=\displaystyle==38π(((l,l)2+(l,r)2)I¯in+((r,l)2+(r,r)2)Q¯in+((l,l)(r,l)+(l,r)(r,r))U¯in)38𝜋superscript𝑙𝑙2superscript𝑙𝑟2subscript¯𝐼𝑖𝑛superscript𝑟𝑙2superscript𝑟𝑟2subscript¯𝑄𝑖𝑛𝑙𝑙𝑟𝑙𝑙𝑟𝑟𝑟subscript¯𝑈𝑖𝑛\displaystyle\frac{3}{8\pi}\left(\left((l,l)^{2}+(l,r)^{2}\right)\bar{I}_{in}+%\left((r,l)^{2}+(r,r)^{2}\right)\bar{Q}_{in}+\left((l,l)(r,l)+(l,r)(r,r)\right%)\bar{U}_{in}\right)divide start_ARG 3 end_ARG start_ARG 8 italic_π end_ARG ( ( ( italic_l , italic_l ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_l , italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT + ( ( italic_r , italic_l ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_r , italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) over¯ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT + ( ( italic_l , italic_l ) ( italic_r , italic_l ) + ( italic_l , italic_r ) ( italic_r , italic_r ) ) over¯ start_ARG italic_U end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT )(A5)
Q¯outsubscript¯𝑄𝑜𝑢𝑡\displaystyle\bar{Q}_{out}over¯ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT=\displaystyle==38π(((l,l)2(l,r)2)I¯in+((r,l)2(r,r)2)Q¯in+((l,l)(r,l)(l,r)(r,r))U¯in)38𝜋superscript𝑙𝑙2superscript𝑙𝑟2subscript¯𝐼𝑖𝑛superscript𝑟𝑙2superscript𝑟𝑟2subscript¯𝑄𝑖𝑛𝑙𝑙𝑟𝑙𝑙𝑟𝑟𝑟subscript¯𝑈𝑖𝑛\displaystyle\frac{3}{8\pi}\left(\left((l,l)^{2}-(l,r)^{2}\right)\bar{I}_{in}+%\left((r,l)^{2}-(r,r)^{2}\right)\bar{Q}_{in}+\left((l,l)(r,l)-(l,r)(r,r)\right%)\bar{U}_{in}\right)divide start_ARG 3 end_ARG start_ARG 8 italic_π end_ARG ( ( ( italic_l , italic_l ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_l , italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT + ( ( italic_r , italic_l ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_r , italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) over¯ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT + ( ( italic_l , italic_l ) ( italic_r , italic_l ) - ( italic_l , italic_r ) ( italic_r , italic_r ) ) over¯ start_ARG italic_U end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT )(A6)
U¯outsubscript¯𝑈𝑜𝑢𝑡\displaystyle\bar{U}_{out}over¯ start_ARG italic_U end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT=\displaystyle==38π(2(l,l)(l,r)I¯in+2(r,r)(r,l)Q¯in+((l,l)(r,r)+(r,l)(l,r))U¯in)38𝜋2𝑙𝑙𝑙𝑟subscript¯𝐼𝑖𝑛2𝑟𝑟𝑟𝑙subscript¯𝑄𝑖𝑛𝑙𝑙𝑟𝑟𝑟𝑙𝑙𝑟subscript¯𝑈𝑖𝑛\displaystyle\frac{3}{8\pi}\left(2(l,l)(l,r)\bar{I}_{in}+2(r,r)(r,l)\bar{Q}_{%in}+\left((l,l)(r,r)+(r,l)(l,r)\right)\bar{U}_{in}\right)divide start_ARG 3 end_ARG start_ARG 8 italic_π end_ARG ( 2 ( italic_l , italic_l ) ( italic_l , italic_r ) over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT + 2 ( italic_r , italic_r ) ( italic_r , italic_l ) over¯ start_ARG italic_Q end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT + ( ( italic_l , italic_l ) ( italic_r , italic_r ) + ( italic_r , italic_l ) ( italic_l , italic_r ) ) over¯ start_ARG italic_U end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT )(A7)
V¯outsubscript¯𝑉𝑜𝑢𝑡\displaystyle\bar{V}_{out}over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT=\displaystyle==38π((l,l)(r,r)(r,l)(l,r))V¯in,38𝜋𝑙𝑙𝑟𝑟𝑟𝑙𝑙𝑟subscript¯𝑉𝑖𝑛\displaystyle\frac{3}{8\pi}\left((l,l)(r,r)-(r,l)(l,r)\right)\bar{V}_{in}\ ,divide start_ARG 3 end_ARG start_ARG 8 italic_π end_ARG ( ( italic_l , italic_l ) ( italic_r , italic_r ) - ( italic_r , italic_l ) ( italic_l , italic_r ) ) over¯ start_ARG italic_V end_ARG start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT ,(A8)

where (l,l)𝑙𝑙(l,l)( italic_l , italic_l ), (r,l)𝑟𝑙(r,l)( italic_r , italic_l ), (l,r)𝑙𝑟(l,r)( italic_l , italic_r ), (r,r)𝑟𝑟(r,r)( italic_r , italic_r ) are:

(l,l)𝑙𝑙\displaystyle(l,l)( italic_l , italic_l )=\displaystyle==sin(θ¯)sin(θin¯)+cos(θ¯)cos(θin¯)cos(φin¯φ¯)𝑠𝑖𝑛¯𝜃𝑠𝑖𝑛¯subscript𝜃𝑖𝑛𝑐𝑜𝑠¯𝜃𝑐𝑜𝑠¯subscript𝜃𝑖𝑛𝑐𝑜𝑠¯subscript𝜑𝑖𝑛¯𝜑\displaystyle sin(\bar{\theta})sin(\bar{\theta_{in}})+cos(\bar{\theta})cos(%\bar{\theta_{in}})cos(\bar{\varphi_{in}}-\bar{\varphi})italic_s italic_i italic_n ( over¯ start_ARG italic_θ end_ARG ) italic_s italic_i italic_n ( over¯ start_ARG italic_θ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_ARG ) + italic_c italic_o italic_s ( over¯ start_ARG italic_θ end_ARG ) italic_c italic_o italic_s ( over¯ start_ARG italic_θ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_ARG ) italic_c italic_o italic_s ( over¯ start_ARG italic_φ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_ARG - over¯ start_ARG italic_φ end_ARG )(A9)
(r,l)𝑟𝑙\displaystyle(r,l)( italic_r , italic_l )=\displaystyle==cos(θ¯)sin(φin¯φ¯)𝑐𝑜𝑠¯𝜃𝑠𝑖𝑛¯subscript𝜑𝑖𝑛¯𝜑\displaystyle cos(\bar{\theta})sin(\bar{\varphi_{in}}-\bar{\varphi})italic_c italic_o italic_s ( over¯ start_ARG italic_θ end_ARG ) italic_s italic_i italic_n ( over¯ start_ARG italic_φ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_ARG - over¯ start_ARG italic_φ end_ARG )(A10)
(l,r)𝑙𝑟\displaystyle(l,r)( italic_l , italic_r )=\displaystyle==cos(θin¯)sin(φin¯φ¯)𝑐𝑜𝑠¯subscript𝜃𝑖𝑛𝑠𝑖𝑛¯subscript𝜑𝑖𝑛¯𝜑\displaystyle-cos(\bar{\theta_{in}})sin(\bar{\varphi_{in}}-\bar{\varphi})- italic_c italic_o italic_s ( over¯ start_ARG italic_θ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_ARG ) italic_s italic_i italic_n ( over¯ start_ARG italic_φ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_ARG - over¯ start_ARG italic_φ end_ARG )(A11)
(r,r)𝑟𝑟\displaystyle(r,r)( italic_r , italic_r )=\displaystyle==cos(φin¯φ¯).𝑐𝑜𝑠¯subscript𝜑𝑖𝑛¯𝜑\displaystyle cos(\bar{\varphi_{in}}-\bar{\varphi})\ .italic_c italic_o italic_s ( over¯ start_ARG italic_φ start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT end_ARG - over¯ start_ARG italic_φ end_ARG ) .(A12)

References

  • Abbott etal. (2019)Abbott, T.M.C., Allam, S., Andersen, P., etal. 2019, ApJ, 872,L30, doi:10.3847/2041-8213/ab04fa
  • Blondin etal. (2013)Blondin, S., Dessart, L., Hillier, D.J., & Khokhlov, A.M. 2013,MNRAS, 429, 2127, doi:10.1093/mnras/sts484
  • Blondin etal. (2022)Blondin, S., Blinnikov, S., Callan, F.P., etal. 2022, A&A, 668,A163, doi:10.1051/0004-6361/202244134
  • Boerner etal. (2023)Boerner, T.J., Deems, S., Furlani, T.R., Knuth, S.L., & Towns, J. 2023, inPractice and Experience in Advanced Research Computing, 173–176
  • Brout etal. (2022)Brout, D., Scolnic, D., Popovic, B., etal. 2022, ApJ, 938, 110,doi:10.3847/1538-4357/ac8e04
  • Bulla etal. (2015)Bulla, M., Sim, S.A., & Kromer, M. 2015, MNRAS, 450, 967,doi:10.1093/mnras/stv657
  • Bulla etal. (2016a)Bulla, M., Sim, S.A., Pakmor, R., etal. 2016a, MNRAS,455, 1060, doi:10.1093/mnras/stv2402
  • Bulla etal. (2016b)Bulla, M., Sim, S.A., Kromer, M., etal. 2016b, MNRAS,462, 1039, doi:10.1093/mnras/stw1733
  • Bulla etal. (2021)Bulla, M., Kyutoku, K., Tanaka, M., etal. 2021, MNRAS, 501, 1891,doi:10.1093/mnras/staa3796
  • Castor (1972)Castor, J.I. 1972, ApJ, 178, 779, doi:10.1086/151834
  • Chandrasekhar (1960)Chandrasekhar, S. 1960, Radiative transfer
  • Chen etal. (2020)Chen, X., Hu, L., & Wang, L. 2020, ApJS, 250, 12,doi:10.3847/1538-4365/ab9a3b
  • Chen etal. (2024)Chen, X., Wang, L., Hu, L., & Brown, P.J. 2024, ApJ, 962, 125,doi:10.3847/1538-4357/ad0a33
  • Cikota etal. (2019)Cikota, A., Patat, F., Wang, L., etal. 2019, MNRAS, 490, 578,doi:10.1093/mnras/stz2322
  • Ferrazzoli etal. (2023)Ferrazzoli, R., Slane, P., Prokhorov, D., etal. 2023, ApJ, 945, 52,doi:10.3847/1538-4357/acb496
  • Gamezo etal. (2004)Gamezo, V.N., Khokhlov, A.M., & Oran, E.S. 2004, Phys.Rev.Lett., 92, 211102,doi:10.1103/PhysRevLett.92.211102
  • Inserra etal. (2016)Inserra, C., Bulla, M., Sim, S.A., & Smartt, S.J. 2016, ApJ, 831,79, doi:10.3847/0004-637X/831/1/79
  • Kasen etal. (2006)Kasen, D., Thomas, R.C., & Nugent, P. 2006, ApJ, 651, 366,doi:10.1086/506190
  • Kerzendorf & Sim (2014)Kerzendorf, W.E., & Sim, S.A. 2014, MNRAS, 440, 387,doi:10.1093/mnras/stu055
  • Kromer & Sim (2009)Kromer, M., & Sim, S.A. 2009, MNRAS, 398, 1809,doi:10.1111/j.1365-2966.2009.15256.x
  • Kromer etal. (2013)Kromer, M., Fink, M., Stanishev, V., etal. 2013, MNRAS, 429, 2287,doi:10.1093/mnras/sts498
  • Lucy (2002)Lucy, L.B. 2002, A&A, 384, 725, doi:10.1051/0004-6361:20011756
  • Lucy (2003)—. 2003, A&A, 403, 261, doi:10.1051/0004-6361:20030357
  • Mihalas (1978)Mihalas, D. 1978, Stellar atmospheres (San Francisco: W.H.Freeman andCompany)
  • Phillips (1993)Phillips, M.M. 1993, ApJ, 413, L105, doi:10.1086/186970
  • Wang & Wheeler (2008)Wang, L., & Wheeler, J.C. 2008, ARA&A, 46, 433,doi:10.1146/annurev.astro.46.060407.145139
  • Wang etal. (2003)Wang, L., Baade, D., Höflich, P., etal. 2003, The Astrophysical Journal,591, 1110, doi:10.1086/375444
  • Yang etal. (2022)Yang, Y., Yan, H., Wang, L., etal. 2022, The Astrophysical Journal, 939, 18,doi:10.3847/1538-4357/ac8d5f
An Integral-Based Technique (IBT) to Accelerate the Monte-Carlo Radiative Transfer Computation for Supernovae (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Manual Maggio

Last Updated:

Views: 6017

Rating: 4.9 / 5 (69 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.